
ing Community also includes over neal statistical sectors an interest and an extensive network en on all Water of Otessionals of yesterday,

WATER SCIENCE AND ENGINEERING

ENVIRONMENTAL SCIENCE

MUNICIPAL WATER AND INFRASTRUCTURE

TERNATIONAL POSTGRADUS OGRAMMES.

COLENCE

FPHILOSOPHY

L SHORT COURSES

TRAINING

ASTAL ENGINEERING AND PORT DEVELOPMENT

PIVIRONMENTAL PLANNING AND MANAGEMENT

WIRONMENTAL SCIENCE AND TECHNOLOGY

MMDWATERHYDROLOGY :

MADRAULIC ENGINEERING AND RIVER BASIN DEVELOPMENT

HYDROINFORMATICS

NTEGRATED URBAN ENGINEERING

LAND AND WATER DEVELOPMENT

LEMNOLOGY AND WETLAND ECOSYSTEMS

SANITARY ENGINEERING

SURFACE WATER HYDROLOGY

WATER RESOURCES MANAGEMENT

WATER SERVICES MANAGEMENT

WATER SUPPLY ENGINEERING

WATER QUALITY MANAGEMENT

Institute for Water Education

INTRODUCING THE UNESCO-IHE INSTITU

CONTENTS

- Master of Sience
- International Masters Programme in Water Management

Water Resources Management Water Services Management Water Quality Management

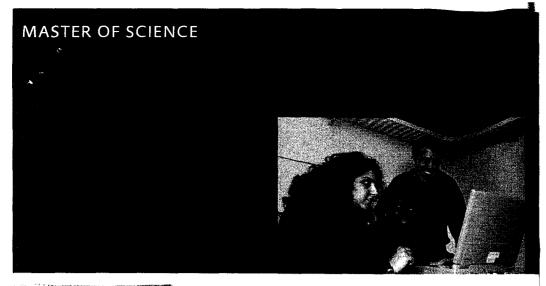
International Masters Programme in Water Science and Engineering

Surface Water Hydrology Groundwater Hydrology, 😻 Hydraulic Engineering and River Basin Development Coastal Engineering and Port Development Land and Water Development **Hydroinformatics**

International Masters Programme in Environmental Science

Environmental Science and Technology **Environmental Planning and Management** Limnology and Wetland Ecosystems Water Quality Management

International Masters Programme in Municipal Water and Infrastructure

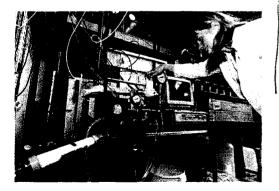

Water Supply Engineering Sanitary Engineering Integrated Urban Engineering Water Services Management

- PhD Programme
- Regular Short Courses 14
- Tailor-made Training Programmes
- Practical and Financial Information

Water is an issue of strategic importance, wit strong environmental, social and economic implications, as expressed in global dialogue: such as the UN Millennium Summit, the Wo Water Fora, the Bonn Freshwater Conference and the World Summit on Sustainable Development.

One message is clear: the need for a more integrated approach to water and environme resources management calls for professional: with a high degree of specialisation, as well a generalists equipped to lead and manage mu disciplinary efforts, individuals and organisations in the water and environment sectors world-wide. Aiming for impact, in November 2001, UNESCO's General Assert declared its support for the establishment of UNESCO-IHE Institute for Water Education, response to the call for increased investment: human resources development and institution capacity building.

Innovative learning at UNESCO-IHE equips professionals with the scientific research, managerial and technical skills needed to dea with challenges in the fields of water, the environment and infrastructure. With the hel of thousands of Alumni active in the water ar environment sectors, UNESCO-IHE Institute Water Education is able to design and more effectively apply educational materials and processes in the delivery of joint products an services. Advances in distance and electronic learning are changing the manner, efficiency and effectiveness by which participants creat share, and apply knowledge with the Alumni



PROGRAMMESTRUCTURE

UNESCO-IHE offers 18-month Master of Science (MSc) programmes. The first year of the programme are taught modules. This is followed by six-month research period resulting in a thesis.

Each module is taught over a three-week period, is structured around a central theme and has a certain number of credit points. UNESCO-IHE uses the European Credit Transfer System (ECTS), in which each credit point is equivalent to 28 study load hours. The UNESCO-IHE Master of Science programme consists of 106 credit points in total.

When the participant has successfully completed the taught modules, he or she will enter an individual research programme for a six-month period, under the guidance of a supervisor. The study is completed with the MSc thesis and a public presentation of its results, which are judged by an examination committee. The study deals with a practical or theoretical problem and is possibly carried out in collaboration with a water sector organisation in the Netherlands or the participant's employer. Field data collection, laboratory or computer analysis work will in many cases form part of the study.

STATUS OF DEGREES

UNESCO-IHE degrees are awarded to participants who have successfully completed an MSc programme. The degrees are recognised as postgraduate degrees by all universities in the Netherlands. The academic level and duration of the MSc programmes awarded by the Institute are comparable with those of Masters Programmes given at universities in the UK, the USA and Australia. The Institute complies fully with the quality control procedures of the Netherlands Ministry of Education, Culture and Science.

QUALITY CONTROL MECHANISMS

The quality of the Institute's educational products and processes is controlled at three levels. First, at the institutional level the Academic Board is responsible for the development of UNESCO-IHE's education, policies, guidelines, structures and regulations. Furthermore, at the programme level the Quality Control Committees have overall responsibility for scientific rigour and administrative efficiency, and they annually report to the Academic Board. Finally, at the course level Programme Coordinators are responsible for the day-to-day course organisation and for supervising the contributions of all lecturers. Each (guest) lecturer is responsible for the content and implementation of his or her own course.

During the academic year participants are asked to fill in a questionnaire asking their opinions about the quality of the programme they are following. Based on this feedback and taking into consideration the recent developments in scientific fields, Programme Committees may adapt courses to ensure that they continue to meet programme objectives as well as participants' needs.

ADMISSION REQUIREMENTS

The official admission requirements for the UNESCO-IHE MSc programmes are:

- A Bachelors degree in a field related to the programme the applicant would like to joi (for requirements specific to this specialisation, please refer to the participal profile section).
- In principle, candidates should have a minimum of three years of practical or research experience after graduation. All applications are, however, considered on t individual merits.
- Since instruction and examinations are given in English, it is essential that participants has a good working knowledge of the English language. If there is any doubt about a candidate's proficiency in English, he or show the proficiency in English, he or show the internationally recognised language tests before confirmation of admittance.

SPECIALISATIONS

SURFACE WATER HYDROLOGY

The specialisation in Surface Water Hydrology focuses primarily on surface water systems. Due attention is given to the collection and processing of hydrological and other environmental data, which are essential activities in order to determine water quantity, water quality and the variations in both space and time. Students become acquainted with engineering and modelling applications, particularly in relation to sustainable water management and aspects of human influences on hydrological systems.

Upon successful completion of this specialisation, the participant is able to:

- Analyse hydrological systems and processes at a wide range of scales using modern techniques for data collection, processing and modelling;
- Integrate hydrological knowledge with a wide range of environmental and water resources decision-making issues;
- Apply the acquired skills to a wide range of design, planning and engineering activities for water supply and hazard mitigation;
- Function in multi-disciplinary teams for water resources and environmental analysis, planning, management and policy-making.

GROUNDWATER HYDROLOGY

The specialisation in Groundwater Hydrology focuses on the analysis of groundwater flow systems, the modelling of the flow and contaminant transport processes at the appropriate scale, and the design and maintenance of comprehensive monitoring systems. Further attention is also given to groundwater exploration, pollution protection, remediation, groundwater resources assessment, development and management as well as to the effects of human activities on groundwater systems.

Upon successful completion of this specialisation, the participant is able to:

- Evaluate groundwater resources and analyse groundwater systems using modern techniques for groundwater exploration, monitoring and modelling;
- Assess groundwater pollution potential and design effective remediation measures;
- Simulate groundwater flow and contaminant transport at a wide range of scales using advanced groundwater models;
- Formulate sustainable groundwater resources development strategies for integrated water and environmental resources planning, management and policy-making.

HYDRAULIC ENGINEERING AND RIVER BASIN DEVELOPMENT

Upon completion of this specialisation, the participant is able to design river structures for different purposes, primarily based on the correct understanding of dynamic river processes. As for any large civil engineering project, river projects must be environmentally (socially, economically and ecologically) compatible. Emphasis is laid on the planning, design and implementation of different scales of water projects (large, medium, and small) and their environmental compatibility and sustainability. The participant will have acquired sufficient knowledge to integrate different, relevant interests in hydraulic engineering projects, as well as to optimise multiple uses, operation and maintenance.

Further deepening is established by several subspecialisations within the course:

- River Structures, directed to defining sites and designs of reservoirs, dams, intakes, hydropower plants, conveyance systems, etc.
- River Intakes and River Training, directed to modelling of the river flow regime, sediment transport, and channel morphology in relation to engineering projects for river training, bank protection, channel flow, navigation, etc.
- Flood Management, directed to the engineering issues, planning, policies and structural/non-structural measures and approaches to cope with floods and mitigate their impacts and consequences.

COASTAL ENGINEERING AND PORT DEVELOPMENT

The overall aim of the specialisation is to provide the basic technical background and practical skills to engineers such that after the programme they are able to solve practical problems in the field of coastal and port engineering. Upon successful completion, the participant is able to:

- Define and analyse coastal problems and conceive alternatives for its solution;
- Apply the latest developments for the planning, design and management in the field of coastal engineering and port development;
- Quantify and understand the interactions between a coastal/ port project and the environment;
- Organise and co-operate in a multidisciplinary group to set-up and implement an integrated coastal zone management plan.

The coastal engineering and port development specialisation is subdivided into two sub-specialisations.

In the combined part of the programme attention is paid to the basics of coastal engineering, to the design of coastal structure and environmental aspects. These branch

- Coastal Engineering: directed to the phenomena of the sea and the coast, in particular coastal morphology. The stuctovers coastal defence works, coastline management, coastal zone management the design of a coastal structure.
- Port Development: directed to the pla design and construction of ports and ha

LAND AND WATER DEVELOPME

The specialisation Land and Water Develor deals with the planning, design, operation maintenance of water management infrastructure with a special emphasis on the modernisation of irrigation, drainage and protection schemes. Attention is paid to be main and field system level. With respect the planning and design, specific attention is go to the required level of service of the scheme relation to land use, requirements of socie environmental impact.

The specialisation provides the skills for th development, implementation and evaluat alternatives for land and water developme management. In order to achieve this, the part of the specialisation (12 months) commainly of lectures, exercises, laboratory an fieldwork.

The second part of the specialisation consi an individual 6-month research that is carri out by the participants. The participants mushow – through individual work and thesis preparation – that they have a good insight specific subject, as well as a general understanding of land and water developm. The topic of study is selected to fit the participant's practical interest and may be connected to an actual problem or may complement the Land and Water Developr. Core research.

After completion of the specialisation, the participants should be able to:

- Define the requirements for irrigation, drainage and flood protection, including technical development or adjustment of t physical infrastructure, organisational and institutional arrangements, to determine and benefits of the proposed systems;
- Evaluate (formulate) alternatives for land water development and assess the technic and economic feasibility of the proposed and water development and management plans;